
Journal of  Thermal Analysis, Vol. 50 (1997) 269-277 

Dedicated to Prof. Menachem Steinberg on the occasion o f  his 65th birthday 

EVALUATION OF KINETIC PARAMETERS FROM A 
SINGLE TG CURVE BASED ON THE SIMILARITY 
THEORY AND PROCESS SYMMETRY 

L L. Lapides 
Department of Inorganic and Analytical Chemistry, The Hebrew University of Jerusalem, 
91904 Jerusalem, Israel 

Abstract 

The equation for calculation of  the activation energy of  the diffusion of  the evolved products 
through the matrix (E) from a single TG curve were proposed by solving Fick's laws. The so- 
lution is based on the similarly theory by utilizing a Fourier number. 

The proposed method was examined by using mass loss data for the dehydroxylation of 
some micas with and without FeO (muscovite and its varieties and lepidolite) as determined 
from their TG curves. The E values for the first stage of  the dehydroxylation of  these micas are 
E1=85+10 kJ mol-~; for the final stage E2=380+40 kJ mol -~ and for the mass loss connected 
with fluorine EF=85+10 kJ mo1-1. 

Keywords: activation energy, dehydroxylation, diffusion, integral criterion of Fourier, mica, 
similarity theory, TG curve 

Introduction 

The kinetics of  the thermal solid state transformations has been described by 
different equations [ 1 ]. For isothermal experiments, a general equation may be 
obtained by simplification of  the model reactions: 

K =  dc~/d'c = kd'(cx); (1) 

ko = A o e x p ( - E / R T )  - Arrhenius equation; (2) 

f(cr = cd(1 - a)f~; f(o~) = (1 - a) n or J(c~) = cd; (3) 

K = A o e x p ( - E / R T ) f l c ~ ) ;  (4) 
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270 LAPIDES: SIMILARITY THEORY 

where K is the rate of  reaction, a - the decomposed fraction of  substances, "c - 
the reaction time,/Co - the reaction rate constant, E - the activation energy, T -  
the temperature in K, R - the gas constant, n - the order of  reaction. 

In the literature one can find an enormous number of  publications on non-iso- 
thermal kinetics [2-7]. Under non-isothermal experimental conditions, with a 
constant heating rate of  the sample, kinetic equations become: 

dc~/dT= (Ao/b ) exp(-E/RT)f(~);  (5) 

do~ 
- (Ao/b) exp(-E/RT)dT;  (6) 

f (oO 

d~j___~) AE re -x A E (7) 

where b=dT/dz  - is the heating rate, F(x)  - the weight integral, P(x )  - the tem- 
perature integral. 

There are many publications where different F(x )  and P(x )  approximations 
are used for different reaction mechanisms [2]. In general solid-state thermal re- 
actions are complicated and multi-staged [8-13],but the activation energy val- 
ues determine quantitatively the changes in amounts of  the reaction products ob- 
tained with time. The activation energies of  the different stages of  the non-iso- 
thermal dehydroxylation of  micas were calculated according to the present 
method and compared with values calculated by means of  two other widely ac- 
cepted methods [6, 7]. 

Only two methods were used in this work for calculation of  the activation en- 
ergy of  the thermal dehydration or dehydroxylation of  micas for comparison 
with the proposed method. 

Horowitz and Metzger [6] used the equation F(c~)=c~ n. After some simplifica- 
tions of  Eqs (5-7) they determined n from the TG and DTG curves and later E 
from the parameters of  the straight line in the coordinates: 

lnlnC vs. 6) (n = 1) (8) 

o r  

ln(1 - C 1-~) vs. 6) (n ~ 1) 

c = w O / ( W o  - 
(9) 

where Wt- is the mass of  sample at temperature T, Wo - the mass of  sample at the 
initial temperature To of  the thermal effect, Wf- the  mass of  sample after the ter- 
mination of  the reaction, T=T~+| T~ - the temperature of  the DTG peak. 
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Coats and Redfern [7] used the expression do~/d'c=K(1 -o~) n together with an 
expansion of the exponential function (6) into a series. Solution of  these equa- 
tions permits graphical evaluation of E in the coordinates 

I- ln(l  - c~).] 1 
In T~- v s .  -~(n= 1) (10) 

lnI.1 - ( 1 - c Q  '-~] 1 
T2-(1-_-- ~ -j vs. -~ (n r 1) (11) 

It should be noted that for n= 1/2; 1/3; 2/3 or 1, similar E values are obtained from 
(10) and (11). Equations (10) and (11) are valid for E>40 kJ mo1-1. 

Diffusion mode l  

If  we consider a case in which the transformation rate is determined by the 
transport of  single atoms, molecules or radicals through the solid phase, the 
common reaction rate is the rate of the diffusion process. In this case all of the 
solutions are based on the mass transfer equations (Fick's laws equations I and 
II): 

3CA 
(I) IA = -D 3x ' (12) 

OCA 3 02CA 
(II) 3 ~  - 3x (-I) - Off ' (13) 

The boundary conditions and the symmetry of the diffusion process, or the re- 
acting bodies, must also be taken into account. These boundary conditions are 
the concentrations of the diffusion phase as a function of  the coordinates (x) and 
time ('c): 

- D  ~ = 3x [3(CAi- CA); CA(x/r) (14) 

where Cai is the equilibrium concentration at the phase boundaries &. 
In the present paper the methods of  the similarity theory were used [14] to 

solve the common equations of diffusion (12 and 13). 
This theory utilizes some numbers (criteria) of  similarity as the diffusion num- 
ber of Fourier Fo, the diffusion number of  Bio, etc. 

D'C 
F o -  2; (15) 

a 
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where a - is the effective radius of  a solid particle, D - the diffusion coefficient. 
An equation which is analogous to the Arrhenius Eq. (2) can be applied to de- 

scribe D as follows: 

D = Do exp(-EIRT) (16) 

where Do is the pre-exponential factor. 
The Fourier number  Fo characterizes an alteration of  the diffusion mass transfer 
in our case when T=T("c). 

In this stage the solution corresponds to the structure symmetry of  the react- 
ing bodies or the symmetry of  the diffusion directions. Since the data used in the 
present communicat ion were those of  the thermal decomposition of  micas which 
are layer silicates [9, 10], we applied a model for diffusion from an infinite plate. 
The solution in this case is as follows [14]: 

[ ~ n ] (17) 
Q- = 1 - 2 ~ ~  4F@o-o (-1) n-' ierfc 
Q o  "/~ n-I 

where Qo and Q are amounts of  diffusion components, initially and at time % re- 
spectively. 
The value of  the expression in brackets is <10 -3 Fo and can be neglected. Equa- 
tion (17) simplifies to 

Q = 1 - Const@~o or ct = Const@o 
Qo 

(18) 

The integral Fourier criterion may be used for the next solution [ 15]. When 
the heating rate is a linear function of  the temperature, Fo is 

"~ z T 

Fo =~D(z)d'~=-~Iexp(-E/Rb'~)d'c =~a2fexp(-E/RT)dT; 
% % To 

(19) 

where "co, To are the time and temperature at the start of  the reaction. Since 
E>>RT, it is possible, according to [16], to change one of the limits of  the inte- 
gral (19) from To to 0: 

Fo = D2 [exp(-E/R T)dT; 
o a  

(20) 

The solution of  a similar integral can be found in the literature [ 17] and is con- 
nected with the function: 
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- •  

X 

g i ( -x )  ~ ~ - -  dx 

The solution for Fo is: 

FRr ] 
Fo = a-7-b~bR L--- ~- exp(-E/RT) + Ei(-E/RT) 

In our case E>>RT, i.e. x >>1 and 

(21) 

E i ( - x )  -=- e x 1 - x -~ [17]. 
x 

Thus, 

D o  r~ 
Fo = R~--~ exp(-E/RT) 

ba 2 1 5  

(22) 

It is possible to find the E value by solving the transcendental equation on the ba- 
sis of(21): 

E 
T~exp(-E/RTI) + ~ Ei(-E/RT1) 

Fox (23) 
Fo2 =11 - E 

T2 exp(-E/RT2) + -g Ei(-E/RT2) 

or, approximately, on the basis of  (22): 

E - R(ln11 - 21nT1/T2) (24) 
1/T2- 1/T~ 

The value 11=Fol/FO2 may be calculated from (18) or, using Fo~ and Fo2 from the 
plot for Fo which must take into account the process symmetry [ 14]. In the mica 
case we can apply the curve of  the plate model mentioned above (Fig. 1 from 
[14]) for the determination of  Fo in accordance with the value o~=ot(T). Only two 
points of  the function or=or(T) were used for calculation of  E from (23) and (24). 
The accuracy of  the E value may be increased by plotting several points. For this 
purpose one must transform (22) to 

ln(Fo/T 2) = A - E/RT (25) 

where 

DoR 
A -  

a2bE ' 
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Thus, a plot may be constructed with the coordinates 

ln(Fo/T 2) vs. 1/T (26) 

A straight line is evidence for the validity of  the diffusion hypothesis. The E 
value in this case was determined from the slope and the A value from the inter- 
cept of  the straight line. 
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0.2 ..~X x ~ - ~ .  \ 0.6 

0.1 ~ 0.5 

0 " ~ - -  ~ 0.4 
0 0.5 1.0 1.5 2.0 25 

> 

Fo 
Fig. 1 Values o f  Fo vs. c~ for an infinite plate model (from [14]) 

Testing of the models 

Experimental data (mass vs. temperature) of  different micas, especially of 
muscovite {KAlz(A1Si3)O10(OH)2} and its varieties, and lepidolites 
{K(Li,A1)3(Si,A1)aOI0(F,OH)2} were taken from TG and DTG curves published 
in our earlier papers [9, 10]. 

Figure 2 shows curves determined from calculations according to the models 
of  Horowitz-Metzger (9), Coats-Redfern (11 ) for six different samples. Figure 3 
shows curves obtained from calculations by the present model for the same six 
samples. 

Mass loss in the TG and DTG curves of  these micas is due to dehydroxyla- 
tion, and in micas which contain fluorine, also, due to their defluorination. In the 
TG and DTG curves of one sample, phengite-muscovite with Z(FeO, MnO, 
MgO and CaO)=4%, the oxidation of  Fe 2+ and Mn 2+ affects the shape of the curves 
and the mass loss. 

By comparing Figs 2 and 3 it may be observed that most points which were 
calculated according to the diffusion model, fall on straight lines, whereas only 
part of  the points which were calculated according to the models of  Horowitz- 
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Metzger (9) and Coats-Redfern (11) fall on straight lines. Thus, for this thermal 
dehydroxylation process of micas the diffusion model seems to be preferable. 

The average E value for all samples (except phengite-muscovite) is: for the 
first stage of the dehydroxylation, E~-85+10 kJ mo1-1, and for the second stage, 
E2-380+40 kJ mol -~. For the phengite-muscovite, where the TG curve includes 
the oxidation process of Fe 2+ and Mn 2+, in addition to the dehydroxylation proc- 
ess, for the initial stages E~=30 -40 kJ mol -~, El~=170+_20 kJ mol q. But for the 
final stage the E value is similar to that of micas without Fe 2§ and Mn 2§ namely 
E2~380+40 kJ mol <. 

? 
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Fig. 2 Experimental TG data in accordance with Coats-Redfern (a) and Horowitz-Metzger 
(b) models: 1 - muscovite, 2 - phengite-muscovite, 3 - muscovite which contains 
some Li, 4 - Li-muscovite, 5 - Al-lepidolite, 6 - Iepidolite 
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Fig. 3 Experimental TG data in accordance with the diffusion model. (For symbols see Fig. 2) 
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The Al-lepidolite lines (Fig. 3) have an additional stage which is connected 
with the loss of fluorine (EFt85 kJ mol<). 

Conclusion 

The chemical reactions which occur during the thermal dehydroxylation [8] 
are not treated in this paper. Only the diffusion of the evolved products through 
the matrix is examined. 

Figure 3 shows that the diffusion process occurs in two or three stages. The 
initial stage of this process is controlled by E1-85+_10 kJ mo1-1. From this value 
and the temperature interval of this stage it seems that the evolved products dif- 
fuse through a mica matrix in which only minor changes occur. 

The last stage of the process is controlled by E2-380_+40 kJ mo1-1. This value 
is higher than E1 (the temperature interval of this stage is also higher) and conse- 
quently it seems that the evolved products diffuse through a more compact ma- 
trix. At this stage a great part of the mica has already been dehydroxylated and 
transformed into meta-mica which contains spinel-like products and an amorphous 
phase [9]. 

Lepidolite, which contains fluorine, is characterized by a diffusion stage 
with EF-85 kJ tool -1. No similar stage is obtained for the other micas, and there- 
fore this stage is attributed to the evolution of fluorine. From the value of  the ac- 
tivation energy it seems that the diffusion of fluorine occurs through a non-struc- 
tured material. This is in agreement with the fact that at the corresponding tem- 
perature the mica has lost its structure [9]. 

Part of this work was carried out in the Institute of Geochemistry of the USSR Academy Sci- 
ence (Irkutsk). I wish to thank Dr. S. B. Brandt for helpful discussions. 
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